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Tow Line Projected Area

Distance above y=0 where a Theoretical Catenary Curve will be Horizontal
Tow Line Drag Coefficient

Tow Line Coefficient of Friction

Drag Force
Glider Drag

Tow Line Diameter
Factor of Safety
Vertical Separation Distance Between the Glider and Tow Aircraft
Uft to Drag Ratio
Tension in the Tow Line
Maximum Tow Line Tension

Tension in the Tow Line at the Location y=c

Tow Line Length
Incremental Tow Line Length
Glider Weigh

Payload Weight

Weight of the Tow Line

Velocity
Vertical Coordinate Distance
Angle Between the Horizontal and the Local Normal Vector to the Tow Line
Atmospheric Density
Tow Line Material Density

Ultimate Strength of the Tow Line

Tow Line Angle with Respect to the Horizontal at the Glider Location
Distributed Load on the Tow Line

Introduction

The desire to sample the atmosphere at altitudes of 24 km or higher from a subsonic instrument
platform has been expressed by the atmospheric science community. The ability to do this would allow for
better understanding of the upper atmosphere in order to determine if any environmental damage has
been or is being done. The upper atmosphere is of prime interest to atmospheric scientists due to the
large amount of active chemistry that takes place in this region. The most widely known aspect of this is
the ozone layer whose recent thinning due to interaction with chlorofluorocarbons is the cause of great
environmental concern.

The main obstacle to producing an aircraft that can fly subsonically above 24 km has been the



powerplant.The ability to supply enough thrust to keep the aircraft at these altitudes for a reasonable
amount of time ( on the order of 4 hours) has proven to be a fairly difficult task. There are a number of
approaches that have been proposed to accomplish this. They range from multiple stage turbocharged
engines to semi-closed cycle engines to rocket driven turbines. Each of these methods and the many
others that have been suggested have their strong points as well as weaknesses. However, regardless of
which method is considered, the main obstacles are always the same - trying to extract oxygen from and /
or reject heat to an extremely rarefied atmosphere. The atmospheric density at 80,000 ft is 1/25th that at
sea level.

One possible method of avoiding these problems is to use a glider and a tow aircraft. The tow
aircraft would remain at a lower altitude, around 20 km, while the glider would ascend to the desired
altitude. The glider and tow aircraft would be connected by a tow line. This scheme allows for the
operation of the tow aircraft power plant in a much denser atmosphere while enabling the sensors and
sampling equipment to attain the desired altitude. Although this concept eliminates the problems with
operating a power plant at very high altitudes it brings in a host of new issues and concems which must be
addressed in order to determine if this concept is a valid alternative to a powered highaltitude aircraft. The
obvious concem with the tow aircraft / glider approach is the characteristics and operation of the tow line
between them. This paper examines how the properties of the tow line, such as material strength and
density, drag, and glider / tow plane separation distance, affect the feasibility of this concept.

Analysis

There are three main areas of interest in the analysis of this concept.They are the glider aircraft,
the tow line, and the tow aircraft. For the present analysis the main concern is the operation and design of
the tow line. The major forces that govem its shape and design are the drag and gravitational forces. The
actual loading on the tow line would be the vector sum of these forces. The following diagram shows the
glider / tow aircraft arrangement and forces on the tow line.
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Figure 1 Tow Aircraft / Glider Configuration
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For this initial analysis it is assumed that the tow line will take the shape of a catenary curve. This is
not completely accurate because the shape of a catenary would ideally result when a uniformly distributed
load is placed on the tow line. In this case however, the load is not uniformly distributed because the drag
load decreases with altitude. Therefore, the actual tow line shape would not be a true catenary. Using

the assumption of a catenary shape however, allows for the fairly easy calculation of the tow line length
which in turn is used to calculate a reasonable estimate of the lifting load placed on the glider by the

weight of the tow line.

The initial information and assumptions made in the analysis are as follows;

1. Glider/Tow Aircraft Vertical Separation Distance (Ah)
2. Glider Aircraft Lift / Drag (L/D)
3. Tow Line Drag Coefficient (Cd)

4. Tow Line Friction Coefficient (Cf)

5. Tow Line Factor of Safety (FoS)
6. Tow Line Material Characteristics ( Pt' (_u)

With this initial information the tow line length and weight can be calculated as follows. The angle the tow
line end makes with the horizontal at the glider (8) is first arbitrarily chosen. With this angle the catenary
curve constant, c, can be calculated (equation 1). This constant is then used in determining the tow line
length and weight (equations 2 and 3 respectively).

c = &h cos(e) / (1-cos(e))

s=(Ah 2 +2 Ah c) 0.5

wt = _ (d/2) 2 s Pt 9.81

(1)

(2)
(3)

For the calculation of the tow line weight, an initial thickness for the tow line is chosen. With the initial tow
line thickness and the known spacing between the aircraft, the drag force on the tow line can be
calculated. The drag is comprised of two components, the form drag which is based on the locally normal
component of velocity and frontal area and the frictional drag which is based on the parallel component of

velocity and the wetted area 1. The drag is expressed in the following equation.

T_,Di = 0.5 V2 As d (T_,sin 2 (_i) Pi Cdi + Cf = T_,cos 2 ((I)i)Pi) (4)

The atmospheric density (p) varies significantly from the tow aircraft to the glider. Therefore the drag on
the tow line must be done incrementally as a function of vertical distance between the two aircraft. The
drag coefficient of the tow line is also a function of Reynolds number. This relationship can be found from
empirical data for an infinite cylinder and is given in reference 2.

Using the given thickness of the tow line and its ultimate strength, the allowable load the tow line
can carry can be calculated. This value is then checked against the tension due to the drag force on the
glider and tow line and the gravitational force on the tow line. Since the drag force act in a horizontal
direction and is a maximum at the tow aircraft while the gravitational force acts in a vertical direction and is a
maximum at the glider, these forces are checked independently against the maximum allowable tension
in the tow line. If the tow line tension caused by either the drag or gravitational force exceeds the tension
allowable in the tow line, the thickness of the tow line must be increased. This thickness is increased
incrementally until the maximum allowable tension exceeds that produced by the forces on the tow line.
The drag force and weight of the tow line have to be recalculated with each iteration.
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Tmax = (Gu _ ((:1/2)2) / FoS (5)

The glider drag can be estimated from the glider, payload and tow line weights and the assumed lift / drag

ratio of the glider. This is given by the following equation.

Dg = (Wp + Wg + w t) / IJD (6)

With the glider drag and the tow line weight now known, the end angle of the tow line at the glider is

calculated from the vector sum of these two forces. This angle is then compared to the initial end angle

assumed at the beginning of the analysis. If they are different, a new end angle is used and the

calculations are repeated until there is no change in this angle between the initial and final values. A flow

chart describing the calculations is given below.

I Input hitial Guess at
Tow Line EndAngle and
Thickness

Calculate TowLineLength

ora0
Calculate Maximum

Tension in Tow Line
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k

Calculate Tow Line
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Q der Drag
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Greater Then Working Load

Increase Tow

Line Diameter

lf Maximum Tension is If the End Angle isLess "[hen VVorkingLoad Different t hen t he

Inputted EndAngle

._ Output Result_ I

Figure 2 Analysis Logical Flow Chart

Results

The assumptions used in the analysis are as follows. The results include variations on some of

these assumptions in order to demonstrate how they effect the drag and weight of the tow line.

Glider Weight 194 kg (428 Ib)

Payload Weight 227 kg (500 Ib)
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Glider L/D
Glider Mach Number
Tow Line Factor of Safety
Tow Line Material:

26
0.4 ( approximately 119 rn/s or 390 ft/sec)

2
Carbon VHS Composite

Density 1530 kg / m3 (95 Ib/ft 3)
Ultimate Strength 1.9 GPa (275 ksi)

The assumed tow line drag coefficient can significantly effect the results. If one assumes the tow
line can be approximated by an infinite cylinder then the drag coefficient can be determined from
experimental data based on Reynolds number. Since the Reynolds number is a function of the
atmospheric density and viscosity it will vary with altitude. To determine what effect this variation will have
on the drag coefficient, data was generated on Reynolds number versus altitude for various glider / tow
aircraft separation distances. The procedure to determine the operational Reynolds number for each
separation distance was an iterative one. This is because as the separation distance increases the
required diameter of the tow line necessary to withstand the drag force increases. This in turn effects the
Reynolds number thereby effecting the selected drag coefficient. The following graph shows the
Reynolds number for various separation distances and the required tow line diameter. By comparing the
range of Reynolds numbers in this graph (1100 to 4700) to the empirical data of Reynolds number versus
drag coefficient for an infinite cylinder, it was determined that the drag coefficient for the tow line would be
approximately 1.0 throughout the complete Reynolds number range. So the results presented are based
on a Cd of 1.0. The coefficient of friction of the tow line was estimated to be 0.001.
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These results are summarized in the following table for a tow aircraft altitude of 20 km.

Comparisons were also made with different tow aircraft altitudes and are shown in figures 4 and 5.
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Glider
Altitude

km (ft)

23

(75,460)

Tow Line
Diameter

cm (in)

24

(78,740)

0.132

(0.052)

25

(82,020)

26

(85,300)

27

(88,58O)

28

(91,860)

29

(95,140)

30

(98,430)

Tow Line 16 31 52 78 110 145 184 224
Weight (35) (68) (114) (172) (242) (319) (405) (493)
kg (Ib)

Tow Line 939 2255 4082 5859 7469 9068 10,683 11,970
Drag N (Ib) (211 ) (507) (918) (1317) (1679) (2039) (2402) (2691)

Tow Line 7795 7187 7234 7763 8583 9450 10,245 11,184
Length (25,574) (23,579) (23,734) (25,469) (28,159) (31,004) (33,612) (36,693)
m(ft)

0.188 0.245 0.290 0.326 0.358 0.387

(0.074) (0.096) (0.114) (0.128) (0.141) (0.152)

0.409

(0.161)

Table 1 Tow Line Specifications
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Figure 4 Tow Line Drag as a function of Glider Altitude
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Figure 5 Tow Line Weight as a Function of Glider Altitude
for Various Tow Aircraft Altitude

To determine what effect each of the assumptions had on the tow line results, cases were generated with

reduced values of tow line drag coefficient and coefficient of friction, tow line material factor of safety and

glider Mach number. These results are shown in figures 6 through 8. The reduction in drag coefficient

may be accomplished by designing a more aerodynamic tow line and adjusting for any low Reynolds

number effects, such as boundary layer separation. The reduction in material factor of safety can be

thought of as either a more aggressive use of the material stated or as an increase in material strength.

The final set of results, shown in figure 9, were generated using the most optimistic values for each of the

assumptions.
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Figure 7 Tow Line Drag Versus Glider Altitude for Various
Tow Line Material Factors of Safety
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Conclusion

Tow Line Drag and Weight Versus Glider Altitude
for the most optimistic assumptions

The concept of towing a glider to high altitudes is an unconventional approach to solving the
problem of producing power and rejecting heat in a rarefied atmosphere. By examining the results one
can see that for the base case assumptions the tow line drag increases significantly with tow aircraft / glider
separation, as would be expected. The tow line drag values represent excess thrust that the tow aircraft
must be capable of generating at altitude. For glider altitudes above 24 km the excess thrust needed
becomes prohibitively large. The results show that by varying some of the initialassumptions significant
reductions in tow line drag and weight can be obtained. The variables which had the greatest effect on
reducing the tow line drag were the decrease in tow aircraft / glider separation distance, the increase in
tow line strength and the decrease in glider Mach number. The reduction in tow line drag coefficient did
reduce the drag but it wasn't as significant a reduction as obtained by the other factors mentioned.

By increasing the tow aircraft altitude this reduces the tow line length. This reduction in length is
from the portion of tow line in the densest atmosphere. Both of these factors result in a significant
reduction in drag. However the problem of producing a subsonic aircraft that can generate excess thrust
at this higher altitude could be as substantial as developing a powered aircraft to fly the mission directly.

The increase in the tow line strength was accomplished by decreasing the factor of safety used in
the strength calculations. This indicates that any improvement in the structural material properties can
have a significant effect on drag reduction. However, The abilityto constructan operational tow line with a
50 to 100% strength increase over the baseline carbon material cannot be considered a realistic
requirement for the development of this concept. The selection of a material will also have to take into
account the ability to build a tow line out of it of uniform strength with a length of 4.5 km or more and to be
able to manage its winding and unwinding from the tow aircraft.
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The final factor that had a significant impact on the tow line drag was the glider Mach number. The
slower the glider flies the lower the drag of the complete system. As the glider flies slower the wing
loading must decrease in order to be capable of supporting itself and any payload at these lower
velocities. This produces a lighter more fragile aircraft which is a concern since the glider has to be towed
to altitude through the denser lower atmosphere. Also, a reduction in the glider velocity also corresponds
to a reduction in the tow aircraft velocity which makes it more difficult for the tow aircraft to produce excess
thrust at high altitudes.

The final portion of the analysis shows a significant reduction in tow line drag when a combination
of these drag reduction approaches are used. This suggests that by taking small steps to reduce drag in a
number of areas, the combined effect would produce a reduction in drag greater than the sum of each
individual improvement. Based on the initial assumptions the practical use of this concept is limited. If,
however, some type of drag reduction method or methods, such as ones previously suggested were
capable of being successfully incorporated then the concept would seem viable.
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